

vtDAQ and vtDAO APIs 1.5 Virtins Technology

vtDAQ and vtDAO APIs

Version 1.5

Note: VIRTINS TECHNOLOGY reserves the right to make modifications to this document at any time without
notice. This document may contain typographical errors.

www.virtins.com 1 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

TABLE OF CONTENTS

1. INTRODUCTION ..4

2. VTDAQ INTERFACE SPECIFICATIONS ..6

2.1 STRUCTURE DEFINITION ...6
2.1.1 SamplingParametersStruct ..6
2.1.2 TriggerParametersStruct ...8
2.1.3 DAQDataStruct..10
2.1.4 DAQDAOSyncParametersStruct..13
2.1.5 DAQDeviceInfoStruct ..13

2.2 APIS ...17
2.2.1 DAQ_SetParameters..17
2.2.2 DAQ_Start ...18
2.2.3 DAQ_Stop ..18
2.2.4 DAQ_GetSamplePosition...18
2.2.5 DAQ_GetDeviceList...19
2.2.6 DAQ_GetDeviceInfo ..19
2.2.7 DAQ_Unlock..20
2.2.8 DAQ_Load ...21
2.2.9 DAQ_Unload ...21

2.3 MESSAGES AND STATUS FLAGS..21
2.3.1 WM_MYMESSAGE_DAQ_START ..21
2.3.2 WM_MYMESSAGE_DAQ_DATA..21
2.3.3 WM_MYMESSAGE_DAQ_STOP ..21
2.3.4 WM_MYMESSAGE_DAQ_ERROR ...21

2.4 C++ WRAPPERS WITH SIMPLE DATA STRUCTURES FOR LABVIEW AND OTHERS ..21
2.4.1 DAQLV_SetDAQType..21
2.4.2 DAQLV_Unlock ...22
2.4.3 DAQLV_SetSamplingParameters ..22
2.4.4 DAQLV_SetTriggerParameters ...23
2.4.5 DAQLV_SetDAQData..23
2.4.6 DAQLV_Start...25
2.4.7 DAQLV_Stop..25
2.4.8 DAQLV_Acknowledge ...25

2.5 C WRAPPERS WITH SIMPLE DATA STRUCTURES FOR LABWINDOWS/CVI AND OTHERS...............................25

3. VTDAQ DEVELOPMENT GUIDE ...26

3.1 FLOWCHARTS..26
3.2 BASIC FILES ..27

4. SAMPLE PROGRAMS ...28

4.1 TESTDAQ WRITTEN IN VISUAL C++ 6.0...28
4.2 MYDAQ.DLL WRITTEN IN VISUAL C++ 6.0..29
4.3 LABVIEW SAMPLES...29

4.3.1 vtDAQCallBack.vi written in Labview 10.0 ...29
4.3.2 vtDAQPolling.vi written in Labview 10.0 ..30
4.3.3 vtDAQCallBackWithAdjustableNumberOfShots written in Labview 10.0 ...31

5. VTDAO INTERFACE SPECIFICATIONS ..32

5.1 STRUCTURE DEFINITION ...32
5.1.1 OutputSamplingParametersStruct ...32
5.1.2 DAODataStruct..35
5.1.3 DAODeviceInfoStruct ..36

5.2 APIS ...38
5.2.1 DAO_SetParameters..38
5.2.2 DAO_Start ...39
5.2.3 DAO_Stop ..39

www.virtins.com 2 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

5.2.4 DAO_GetSamplePosition...39
5.2.5 DAO_GetDeviceList...39
5.2.6 DAO_GetDeviceInfo ..40
5.2.7 DAO_Unlock..40
5.2.8 DAO_Load ...41
5.2.9 DAO_Unload ...41
5.2.10 DAO_Write ..41

5.3 MESSAGES AND STATUS FLAGS..42
5.3.1 WM_MYMESSAGE_DAO_START ..42
5.3.2 WM_MYMESSAGE_DAO_DATA..42
5.3.3 WM_MYMESSAGE_DAO_STOP ..42
5.3.4 WM_MYMESSAGE_DAO_ERROR ...42
5.3.5 WM_MYMESSAGE_DAO_STOP_REQUEST ...42

6. VTDAO DEVELOPMENT GUIDE ...43

6.1 FLOWCHARTS..43
6.2 BASIC FILES..44
6.3 HOW TO CHOOSE CORRECT OUTPUT MODE ...44

6.3.1 Hardware Sampling Clock...44
6.3.2 Software Timed Sampling Clock ..44

7. SAMPLE PROGRAMS ...45

7.1 TESTDAO WRITTEN IN VISUAL C++ 6.0...45

www.virtins.com 3 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

1. Introduction

Multi-Instrument is able to interface to many ADC and DAC devices including sound cards
based on the standard data acquisition software interface specification developed by Virtins
Technology: vtDAQ for ADC and vtDAO for DAC. DAQ is a short form for Data
Acquisition and DAO is a short form for Data Output. For each category of hardware devices,
an intermediate interface DLL (dynamic link library) needs to be developed according to this
standard interface specification to bridge Multi-Instrument and the device’s original driver or
software interfaces. The software can work with any device as long as the corresponding
intermediate interface DLL is provided. One interface DLL should contain either the ADC
functions or DAC functions, but not both if possible, even if all of these functions are
supported by one single device. This is to ensure that the ADC and DAC devices can be
selected independently in Multi-Instrument. For example, you can run a DSO (Digital
Storage Oscilloscope) hardware for ADC and the sound card for DAC simultaneously in
Multi-Instrument.

The following diagram shows how Multi-Instrument communicates with different types of
ADC hardware via the standard vtDAQ interfaces.

Multi-Instrument

3
SoundCardMM

EDAQ.dll

2
Sound Card
MME driver

1 Sound Cards

SoundCardASI

ODAQO.dll

Sound Card
ASIO driver

Sound Cards

NIDAQ.dll

NI DAQmx
driver

NI DAQmx
Cards

VTDSOH1.dll
VTDSOH2.dll

VTDSOH1drv.dll
VTDSOH2drv.dll

VT DSO H1/
H2 Units

VTDAQ1.dll

VT DAQ1
driver

VT DSOs

VTDSOF1.dll

VTDSOF1drv.
dll

VT DSO F1
Units

vtDAQ
interfaces

…

…

Legend

vtDAQ Interfaces Hardware Specific
Interfaces

…

1 ADC Devices 3
Intermediate Interface

DLLs 2
Hardware Specific

Drivers

www.virtins.com 4 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

The following diagram shows how Multi-Instrument communicates with different types of
DAC hardware via the standard vtDAO interfaces.

Multi-Instrument

SoundCardMM
EDAO.dll

Sound Card
MME driver

Sound Cards

SoundCardASI

ODAQO.dll

Sound Card
ASIO driver

Sound Cards

NIDAO.dll

NI DAQmx
driver

NI DAQmx
Cards

vtDAO
interfaces

…

…

…

VT DAO1
driver

VT DSOs

VTDAO1.dll

vtDAO Interfaces Hardware Specific
Interfaces

1

2

3

1

Legend

DAC Devices 2 3
Hardware Specific

Drivers
Intermediate Interface

DLLs

You can write your own back-end program to interface to the ADC and DAC devices that are
supported by Multi-Instrument via vtDAQ and vtDAO interfaces. As all these devices
conform to the same interface standard, you only need to write the interface codes in
your program once and your program will support all these devices.

On the other hand, you can also write your own intermediate interface DLLs to allow Multi-
Instrument to interface to your own hardware. You need to perform the following steps:

1) Develop your own vtDAQ compatible DLL and vtDAO compatible DLL.
2) Delete the space-holder files in the software’s root directory: MyDAQ.dll and

MyDAO.dll
3) Name your vtDAQ compatible DLL as MyDAQ.dll and your vtDAO compatible DLL as

MyDAO.dll, and put them in the software’s root directory.
4) Remove the space-holder item “My DAQ Device” in the ADC Device Database via

[Setting]>[ADC Device Database].
5) Remove the space-holder item “My DAO Device” in the DAC Device Database via

[Setting]>[DAC Device Database].
6) Add your own ADC device into the above ADC Device Database
7) Add your own DAC device into the above DAC Device Database
8) Select your own ADC device via [Setting]>[ADC Device]
9) Select your own DAC device via [Setting]>[DAC Device]
www.virtins.com 5 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

Note that the original space-holder MyDAQ.dll and MyDAO.dll are actually the same as
SoundCardMMEDAQ.dll and SoundCardMMEDAO.dll. The original space-holder “My
DAQ device” and “My DAO device” are actually the sound card in your computer. These
space holders are used for demonstration and testing purpose. You can replace them with
your own items.

In the following chapters, the vtDAQ and vtDAO Interface Specifications will be described,
followed by the following sample programs:

 TestDAQ, a sample DAQ back-end program in Visual C++ 6.0.
 TestDAO, a sample DAO back-end program in Visual C++ 6.0.
 MyDAQ, a sample DAQ intermediate interface DLL in Visual C++6.0.

2. vtDAQ Interface Specifications

2.1 Structure Definition

2.1.1 SamplingParametersStruct

 struct SamplingParametersStruct

 {
 double SamplingFrequency;
 WORD SamplingChannels;
 WORD SamplingBitResolution;
 DWORD RecordLength;
 WORD DeviceNo;
 WORD ChannelNo[32];
 double HighLimit[32];
 double LowLimit[32];
 WORD TerminalConfiguration[32];
 WORD CouplingType[32];
 double ReservedDouble[8];
 DWORD ReservedDWORD[8];
 };

 Members

 SamplingFrequency
 Sampling Frequency in Hz.

 SamplingChannels
 Number of Sampling Channels.

 SamplingBitResolution

Bit resolution of the DAQ data. It can only be 8, 16, 24, or 32 bits. It
should generally be equal to the bit resolution of the ADC device. However,
if the bit resolution of the ADC device is not an integer multiple of 8, then
it is the intermediate DLL’s responsibility to round up the bit resolution of

www.virtins.com 6 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

the raw data to the nearest integer multiple of 8. For example, NI USB-
6009 has a bit resolution of 14 when connected in differential input mode,
this parameter should then be set to 16, and the NIDAQ.dll will output the
DAQ data with a bit resolution of 16.

 RecordLength
 Record Length. It should not exceed the buffer size of the device. For

devices that support continuous data streaming, the buffer size can be
considered as unlimited.

 DeviceNo
 Device No. of the same category of ADC devices present in the system. If

there is only one such device in the system, then its value should be zero. If
there are multiple such devices in the system, then this parameter specifies
which one to use. For example, for SoundCardMMEDAQ.dll, it specifies
which sound card to use under Windows OS before Windows Vista; It
specifies which endpoint (i.e. which input source (e.g. Mic, Line In, etc.) of
which sound card) to use under Windows Vista and 7.

 ChannelNo[32]

This array assigns each sampling channel with a physical channel No.. The
sampling channel numbers must start from 0 to SamplingChannels-1,
and each sampling channel must be assigned with a physical channel No..
A physical channel is a channel in the ADC device. For example, if the
ADC device supports 16 channels, and you want to sample only Channel 5
and Channel 9 out of the 16 channels, then you should specify:
 ChannelNo[0] = 5
 ChannelNo[1] = 9

 These parameters are not used by SoundCardMMEDAQ.dll.

 For SoundCardASIODAQO.dll, ChannelNo[16] is the physical channel No.

of the DAO output channel A, and ChannelNo[17] is the physical channel
No. of the DAO output channel B.

 HighLimit[32]

This array specifies the ADC high limit of each sampling channel.

These parameters are not used by SoundCardMMEDAQ.dll and
SoundCardASIODAQO.dll.

LowLimit[32]

This array specifies the ADC low limit of each sampling channel.

These parameters are not used by SoundCardMMEDAQ.dll and
SoundCardASIODAQO.dll.

TerminalConfiguration[32]

This array specifies the terminal configuration of each sampling channel.

www.virtins.com 7 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

For example, for NI DAQmx devices:
0: At run time, NI-DAQmx chooses the default terminal configuration

for the channel.
1: Referenced single-ended mode
2: Nonreferenced single-ended mode
3: Differential mode
4: Pseudodifferential mode

These parameters are not used by SoundCardMMEDAQ.dll,
SoundCardASIODAQO.dll, VTDSOH1.dll, VTDSOH2.dll, and
VTDSOF1.dll.

CouplingType[32]
This array specifies the coupling type of each sampling channel.

0: AC
1: DC
2: GND

These parameters are not used by SoundCardMMEDAQ.dll,
SoundCardASIODAQO.dll.

ReservedDouble[8]
 Reserved.

ReservedDWORD[8]
 Reserved.

 For VT DSO-2810F, ReservedDWORD[0]=1;

 For SoundCardASIODAQO.dll, ReservedDWORD[0] is the index for

ASIO buffer size selection, with 0: Auto; 1: Max; 2: Min.

 For Second-Generation VT DSOs,
 [1]: Number of Digital Channels
 [2]-BIT0: Enable BitResolutionEnhancement
 [2]-BIT1: Enable High Frequency Rejection for Trigger Frequency
 Rejection HNX option
 [3]-BIT0: 0: Interlaced 1: Channel by Channel

 For SoundCardDAQ.dll and SoundCardASIODAQO.dll,

ReservedDWORD[4] is used to differentiate Device Models:
 0: Sound Cards
 1: IEPE-2G05
 2: CHAM-2G05
 3: RTA-1G05

2.1.2 TriggerParametersStruct

 struct TriggerParametersStruct
 {

www.virtins.com 8 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

 WORD TriggerMode;
 WORD TriggerSource;
 WORD TriggerEdge;
 double TriggerLevelPercent;
 double TriggerDelayPercent;
 WORD ExtChannelNo;
 BOOL RecordMode;
 BOOL HardwareTrigger;
 double ReservedDouble[8];
 DWORD ReservedDWORD[8];

 };

 Members

 TriggerMode
 Trigger Mode.

0: Auto or Free Run
1: Normal

TriggerSource

 Trigger Source, to be assigned with the sampling channel No..
0: Channel A
1: Channel B
2: EXT
3: ALT

TriggerEdge
 Trigger Edge.

0: Up
1: Down
2: Up or Down
3: Jump
4: Differential

 Please refer to multi-instrument software manual for detailed explanation on

the meaning of each item.

TriggerLevelPercent

 Trigger Level Percentage.

 For ALT mode, it is Trigger Level Percentage for Channel A.

TriggerDelayPercent
 Trigger Delay Percentage.

ExtChannelNo
 Physical Channel No. for External Trigger.

RecordMode
 Record Mode.

FALSE: Not Record Mode

www.virtins.com 9 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

The specified trigger parameters will have effect on acquiring each
frame of data.

TRUE: Record Mode.
The specified trigger parameters will only have effect on acquiring
the first frame of data, and subsequent frames of data will be
acquired continuously regardless of the trigger parameters.

HardwareTriggeres

FALSE: Not hardware trigger. Software trigger is only possible for those
ADC devices that support continuous data streaming.

TRUE: Hardware trigger.

ReservedDouble[8]
 Reserved.

 For ALT mode, ReservedDouble[0] is Trigger Level Percent for Channel

B.

 For Second-Generation VT DSOs,
 [1]: External Trigger Level Percentage
 [2]: Noise Rejection Hysteresis Percentage for Trigger Frequency
 Rejection HNX option (e.g.10 for 10%)

ReservedDWORD[8]
 Reserved.
 For Second-Generation VT DSOs,
 [0]: Trigger Frequency Rejection
 0: NIL
 1: HFR (High Frequency Rejection)
 2: NR0 (Noise Rejection Level 0)
 3: NR1; 4: NR2; 5: NR3; 6: NR4;
 7: HN0 (High Frequency Rejection + Noise Rejection Level 0);
 8: HN1; 9: HN2; 10: HN3; 11: HN4;
 12: HNX (High Frequency Rejection and / or Noise Rejection Level X)
 [1]: Trigger Slave / Master
 0: Slave 1: Master
 [2]: Roll Mode
 0: Not Roll Mode 1: Roll Mode

2.1.3 DAQDataStruct

struct DAQDataStruct
{
 char ** ppRecordData;
 long * pRecordDataCount;
 unsigned long RecordBufferCount;
 DWORD RecordedTriggerLevelBefore;
 DWORD RecordedTriggerLevelAfter;
 DWORD RecordedTriggerLevel;

www.virtins.com 10 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

 struct _timeb RecordedTimeStamp;
 WORD Status;
 double ReservedDouble[8];
 DWORD ReservedDWORD[8];
};

 Members

 ppRecordData
Pointer to a pointer array. Each element of the pointer array contains the
address of a “char” data array. The “char” data array is called a record buffer.
The size of each record buffer must be equal to [Record Length] 
[Sampling Channels]  [Sampling Bit Resolution] / 8. Note that for 8-bit
data, the data are stored in the record buffer as unsigned values; for 16-bit,
24-bit, and 32-bit data, the data are stored in the record buffer as signed
values. This conforms to the data format in a wave file. Therefore it can be
readily stored in a wave file without converting the data format.

pRecordDataCount

Pointer to a “long” data array, where each element of the array contains the
actual number of recorded bytes in the corresponding record buffer. The size
of this array must be equal to the number of record buffers. After the
calling program processes all the recorded data in the record buffer, it
must set the number of recorded bytes to zero to inform the
intermediate DLL that this record buffer is ready to accept new data.

RecordBufferCount

Number of record buffers. In most of cases, one record buffer is enough. In
some special cases, especially if the calling program is not able to process
the recorded data in time, you may need to create and use more record
buffers to buffer the recorded data before they can be processed.

RecordedTriggerLevelBefore

The value of the sample just before the first recorded sample. This
parameter is only valid if software trigger or some VT DSO models are used.
The value is stored as an unsigned value.

RecordedTriggerLevelAfter

The value of the first recorded sample. This parameter is only valid if
software trigger or some VT DSO models are used. The value is stored as an
unsigned value.

RecordedTriggerLevel

Trigger level. This parameter is only valid if software trigger or some VT
DSO models are used. The value is stored as an unsigned value.

The relationship of RecordedTriggerLevelBefore,
RecordedTriggerLevelAfter, RecordedTriggerLevel is
shown in the following figure.

www.virtins.com 11 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

Level

Trigger Level

Sample No.

RecordedTriggerLevelBefore

RecordedTriggerLevelAfter

RecordedTriggerLevel
(Trigger Edge: Up)

n n-1

RecordedTimeStamp
Time stamp of the first sample in the record buffer.

Status

DAQ status
Bit0: 0: Not Triggered; 1: Triggered
 Bit1: 0: Stop; 1: Running

ReservedDouble[8]

 Reserved.

ReservedDWORD[8]
 Reserved.

www.virtins.com 12 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

2.1.4 DAQDAOSyncParametersStruct

 struct DAQDAOSyncParametersStruct
 {

 long StartSamples;
 long SkipSamples;
 int Mode;
 long DelayedSamples;
 double ReservedDouble[8];
 DWORD ReservedDWORD[8];

 };

DelayedSamples

StartSamples SkipSamples DAQ Sample No.

StartDAO Start Trigger Search Triggered Point StartDAQ

0

The above figure shows the timing diagram of the DAQ and DAO synchronization
process. The DAQ should be started first by the calling program with
StartSamples=-1. When the calling program starts the DAO, it should get the
DAQ sample position at the same time using DAQ_GetSamplePosition() and
assign its value to StartSamples. The calling program can also specify how many
samples to be skipped (via SkipSamples) before the interface DLL starts to search
for the trigger event. The interface DLL will calculate the DelayedSamples after
the trigger event is found.

Mode
4: Sync. No Loopback
5: Sync. iB = oA
6: Sync. iB  oA

Please refer to the Signal Generator chapter in the Multi-Instrument software manual
for the definition of these modes.

2.1.5 DAQDeviceInfoStruct

 struct DAQDeviceInfoStruct
 {

 char ProductCategory[255];
 char ProductType[255];
 char ProductNumber[255];
 char DeviceSerialNumber[255];
 char ChassisModuleName[255];
 BOOL SoftwareTriggerSupported;
 BOOL HardwareTriggerSupported;

www.virtins.com 13 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

 BOOL HardwareTriggerLevelAdjustable;
 BOOL HardwarePreTriggerSupported;
 BOOL HardwareALTTriggerSupported;
 BOOL ExternalTriggerSupported;
 BOOL ExternalTriggerLevelAdjustable;
 WORD BasicUnit;
 WORD NumberOfAIs;
 double SingleChannelRate;
 double MultiChannelRate;
 double MinimumRate;
 BOOL SimultaneousSamplingSupported;
 double VoltageRange[64];
 double FrequencyRange[64];
 WORD BitRange[32];
 long CouplingType[3];
 BOOL CouplingTypePerChannel;
 long TerminalType[5];
 DWORD BufferSize;
 BOOL Validity;
 double ReservedDouble[8];
 DWORD ReservedDWORD[8];

 };

Parameters

ProductCategory[255]
 Product Category name.

ProductType[255]

 Product Type name.

ProductNumber[255]
 Product Number.

DeviceSerialNumber[255]
 Device Serial Number.

ChassisModuleName[255]
 Chassis Module Name.

SoftwareTriggerSupported

Indicates if the device supports software trigger. Only those devices that
support continuous data streaming can support software trigger.

FALSE: Not supported.
YES: Supported.

HardwareTriggerSupported

Indicates if the device supports hardware trigger.

FALSE: Not supported.

www.virtins.com 14 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

YES: Supported.

HardwareTriggerLevelAdjustable

Indicates if the hardware trigger level is adjustable.

FALSE: Not supported.
YES: Supported.

HardwarePreTriggerSupported

Indicates if the hardware pre-trigger is supported.

FALSE: Not supported.
YES: Supported.

HardwareALTTriggerSupported

Indicates if the device supports hardware ALT trigger.

FALSE: Not supported.
YES: Supported.

ExternalTriggerSupported

Indicates if the device supports hardware EXT trigger.

FALSE: Not supported.
YES: Supported.

ExternalTriggerLevelAdjustable

Indicates if the external trigger level is adjustable.

FALSE: Not adjustable.
YES: Adjustable.

BasicUnit

Indicates the ADC type of the device.

0: Analog voltage to digital conversion.
1: Analog current to digital conversion.

NumberOfAIs

 Indicates the number of AI input channels of the device.

SingleChannelRate
Indicates the maximum sampling rate of a channel if only a single input channel
of the device is used.

MultiChannelRate

Indicates the maximum sampling rate of a channel if all the input channels of
the device are used. For multiplexed devices, MultiChannelRate =
SingleChannelRate / NumberOfAIs

www.virtins.com 15 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

MinimumRate
Indicates the minimum sampling rate of a channel of the device.

SimultaneousSamplingSupported

Indicates if the device supports simultaneous sampling.

VoltageRange[64]

Indicates the pairs of input voltage ranges supported by the device. Each pair
consists of a low limit, followed by a high limit. The pairs are stored in
ascending order. The not-used elements of this array will be filled with zeros.

FrequencyRange[64]

Indicates the pairs of input sampling frequency ranges supported by this device.
Each pair consists of a low limit, followed by a high limit. The pairs are stored
in ascending order. The not-used elements of this array will be filled with zeros.

BitRange[32]

Indicates input bit resolutions supported by the device. The values are stored in
ascending order. The not-used elements of this array will be filled with zeros.

CouplingType[3]

Indicates the coupling types supported by the device.
0: AC
1: DC
2: GND

The not-used elements of this array will be filled with -1.

CouplingTypePerChannel

Indicates if the device supports change of coupling type on per channel basis.

TerminalType[5]

Indicates the coupling types supported by the device.
0: default.
1: Referenced single-ended mode
2: Nonreferenced single-ended mode
3: Differential mode
4: Pseudodifferential mode

The not-used elements of this array will be filled with -1.

BufferSize

Indicates the buffer size (in samples) per channel. A value of 4294967295
indicates that there is no limit on the buffer size.

Validity
 Reserved.

ReservedDouble[8]
 Reserved.

www.virtins.com 16 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

ReservedDWORD[8]
 Reserved.

2.2 APIs

2.2.1 DAQ_SetParameters

The DAQ_SetParameters function sets the DAQ parameters.

int DAQ_SetParameters(
SamplingParametersStruct& SamplingParameters,
TriggerParametersStruct& TriggerParameters,
DAQDataStruct& DAQData,
DAQDAOSyncParametersStruct& DAQDAOSyncParameters,
DWORD dwCallBack,
DWORD fdwOpen
);

Parameters
SamplingParameters

 Address of a SamplingParametersStruct structure that contains the specified
sampling parameters for DAQ. The sampling parameters specified must not
exceed the capability of the ADC device.

TriggerParameters

 Address of a TriggerParametersStruct structure that contains the specified trigger
parameters for DAQ. The trigger parameters specified must not exceed the
capability of the ADC device if hardware trigger or external trigger is used. For
software trigger, the trigger capacity depends on the interface DLLs. Software
Trigger is only possible for those ADC devices that support continuous streaming,
such as sound cards.

DAQData

 Address of a DAQDataStruct structure.

DAQDAOSyncParameters

Address of a DAQDAOSyncParametersStruct structure. This parameter is used
only if you need to synchronize the DAO and DAQ processes, and the
synchronization is only possible if software trigger is used in the DAQ. Otherwise,
it should be set to NULL.

dwCallBack

Address of a handle to a window, or the identifier of a thread to be called during
DAQ to process messages related to the progress of DAQ. If dwCallBack =

www.virtins.com 17 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

NULL, then no message will be posted back, that is, the callback function will not
be called.

fdwOpen
 0: dwCallBack is a window handle.
 1: dwCallBack is a thread identifier.
 2: VT hardware initialization and initialize the DLL with the information stored in

the VT hardware
 4: initialize the DLL with the information stored in the VT hardware

Return Values

<0: fail.

2.2.2 DAQ_Start

The DAQ_Start function starts the DAQ process. It should be called after
DAQ_SetParameters.

int DAQ_Start()

Return Values

0: Successful
-1: Fail to start DAQ
-2: Sampling frequency not supported
-3: Buffer size exceeded.
-4: DAQ card not found
-5: Trigger Delay Percentage not supported
-6: ADC Range not supported

2.2.3 DAQ_Stop

The DAQ_Stop function stops the DAQ process.

int DAQ_Stop()

Return Values

Reserved.

2.2.4 DAQ_GetSamplePosition

The DAQ_GetSamplePosition function retrieves the current input position.

int DAQ_GetSamplePosition()

Return Values

Sample No..

www.virtins.com 18 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

2.2.5 DAQ_GetDeviceList

The DAQ_GetDeviceList function retrieves a list of the ADC devices of the same category
present in the system. It may also be used to retrieves a list of channels for a specified device.
You may use the retrieved information to determine which device or which channel to use
for DAQ.

int DAQ_GetDeviceList(
char **ppDevList,
int MaxEntries,
int MaxLength,
int DeviceNo
);

Parameters
ppDevList

Pointer to a string array. Each string will contain a device name. It is NULL
terminated.

MaxEntries
The maximum number of the strings allocated by the calling program.

MaxLength
The maximum length of each string allocated by the calling program.

DeviceNo
-1: to get a list of device names.
>=0: Device No., to get a list of channel names for the specified device. (applicable
for SoundCardASIODAQO.dll)

Return Values
Number of Devices or number of channels.

2.2.6 DAQ_GetDeviceInfo

The DAQ_GetDeviceInfo function retrieves the information of a specified ADC device
present in the system. You may use the retrieved information to determine the sampling and
trigger capacity of the device.

DAQ_GetDeviceInfo(
DAQDeviceInfoStruct& DAQDeviceInfo,
WORD DeviceNo
);

Parameters
DAQDeviceInfo
 Address of a DAQDeviceInfo structure.

www.virtins.com 19 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

DeviceNo

Device No. of the device whose information to be retrieved.

Return Values

 Reserved.

2.2.7 DAQ_Unlock

The DAQ_Unlock function unlocks the interface DLL so that its functions can be used by the
calling program. This function must be called before any interface functions can be used.

int Unlock(
WORD nSerialNumberPart1, //serial number part 1
WORD nSerialNumberPart2, //serial number part 2
WORD nSerialNumberPart3, //serial number part 3
WORD nSerialNumberPart4 //serial number part 4
)

Parameters
nSerialNumberPart1
 Part 1 of the serial number of the interface DLL.

nSerialNumberPart1
 Part 2 of the serial number of the interface DLL.

nSerialNumberPart1
 Part 3 of the serial number of the interface DLL.

nSerialNumberPart1
 Part 4 of the serial number of the interface DLL.

Return Values

 Reserved.

Note that:

1. The serial number has a format of part1-part2-part3-part4, where each part contains four

characters in hex format.

2. For copy-protected vtDAQ DLLs, such as the trial version, the softkey activated version,

the USB hardkey activated version and the DSO hardware bundled version, a generic
serial number 0000-0000-0000-0000 should be used. Note that for the trial version and
the softkey activated version, a warning message will pop up showing that the DLL is a
trial version. The message will not show up if a USB hardkey or any VT DSO hardware
is connected to your computer.

3. For not-copy-protected vtDAQ DLLs, which is usually the case for OEM, a customer

specific serial number will be given when the DLL is purchased from Virtins Technology.

www.virtins.com 20 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

2.2.8 DAQ_Load
 Reserved.

2.2.9 DAQ_Unload
 Reserved.

2.3 Messages and Status Flags

2.3.1 WM_MYMESSAGE_DAQ_START

This message is sent when the device is started using DAQ_Start. Meanwhile, the
second bit of Status in DAQDataStruct is set.

2.3.2 WM_MYMESSAGE_DAQ_DATA

This message is sent when the device has recorded one frame of data, i.e. one record
buffer is full. Meanwhile, the RecordDataCount in DAQDataStruct will be
changed from zero to the actual bytes that have been recorded in that record buffer.

The wParam parameter of this message will be filled with the buffer no. of the returned
record buffer.

2.3.3 WM_MYMESSAGE_DAQ_STOP

This message is sent when the device is stopped using DAQ_Stop. Meanwhile, the
second bit of Status in DAQDataStruct is reset.

2.3.4 WM_MYMESSAGE_DAQ_ERROR
 This message is sent when the device has encountered errors.

2.4 C++ Wrappers with simple data structures for Labview and others

Some auguments in vtDAQ APIs have a complex data structure which may not be readily
supported by other software development tools such as Labview. vtDAQLV.dll is a wrapper
developed around all those vtDAQ compatible dlls. It uses simple data structures.

In Labview, vtDAQLV.dll can be called using Call Library function node. Stdcall (WINAPI)
calling convention should be used.

For implicit linking in other software tools, the corresponding header file is vtDAQcplus.h
and the library file is vtDAQLV.lib.

2.4.1 DAQLV_SetDAQType

The DAQLV_SetDAQType function loads a hardware-specfic vtDAQ compatible dll
dynamically. This function must be called before any interface functions can be used
including the unlock function.
www.virtins.com 21 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

int SetDAQType(
WORD Type
)
Parameters
Type
 Type of hardware.

 0: SoundCardMMEDAQ.dll
 1: SoundCardASIODAQO.dll
 2: NIDAQ.dll

3: VTDSOH1.dll
4: VTDSOH2.dll
5: VTDSOF1.dll
6: VTDSOH3.dll
7: VTDAQ1.dll
8: Reserved
9: MyDAQ.dll

Return Values

 0: Successful.
 1: Failed

2.4.2 DAQLV_Unlock

Same as Section 2.2.7.

2.4.3 DAQLV_SetSamplingParameters

Basically it sets the SamplingParameters in DAQ_SetParameters API (Refer to Sections
2.2.1 & 2.1.1).

int DAQLV_SetSamplingParameters(
double SamplingFrequency,
WORD SamplingChannels,
WORD SamplingBitResolution,
DWORD RecordLength,
WORD DeviceNo,
WORD * pChannelNo,
double * pHighLimit,
double * pLowLimit,
WORD * pTerminalConfiguration,
WORD * pCouplingType,
double * pReservedDouble,
DWORD * pReservedDWORD
)

Parameters

 Refer to Sections 2.1.1.

www.virtins.com 22 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

Return Values

 0: Successful.

2.4.4 DAQLV_SetTriggerParameters

Basically it sets the TriggerParameters in DAQ_SetParameters API (Refer to Sections 2.2.1
& 2.1.2).

int DAQLV_SetTriggerParameters(
WORD TriggerMode,
WORD TriggerSource,
WORD TriggerEdge,
double TriggerLevelPercent,
double TriggerDelayPercent,
WORD ExtChannelNo,
BYTE RecordMode,
BYTE HardwareTrigger,
double * pReservedDouble,
DWORD * pReservedDWORD
)

Parameters

 Refer to Sections 2.1.2.

Return Values

 0: Successful.

2.4.5 DAQLV_SetDAQData

Basically it sets the DAQData in DAQ_SetParameters API (Refer to Sections 2.2.1 & 2.1.3).

int DAQLV_SetDAQData(
char *ppRecordData,
long * pRecordDataCount,
unsigned long RecordBufferCount,
DWORD *RecordedTriggerLevelBefore,
DWORD *RecordedTriggerLevelAfter,
DWORD *RecordedTriggerLevel,
DWORD *RecordedTimeStampInSeconds,
DWORD *RecordedTimeStampInMilliSeconds,
WORD *Status,
double * pReservedDouble,
DWORD * pReservedDWORD,
DWORD dwCallBack1,
DWORD fdwOpen1,
double *CalibratedData1,
WORD CalibrationMode1

www.virtins.com 23 Copyright © 2016 Virtins Technology

)

vtDAQ and vtDAO APIs 1.5 Virtins Technology

Parameters

 Refer to Sections 2.1.3. There are some important differences to note here.

ppRecordData
A “char” data array. It contains one or multiple record buffers. The size (in
bytes) of each record buffer must be equal to [Record Length]  [Sampling
Channels]  [Sampling Bit Resolution] / 8. The total size (in bytes) of
ppRecordData is then [Record Buffer Count]  [Record Buffer Size].

RecordedTriggerLevelBefore

A pointer to RecordedTriggerLevelBefore.

RecordedTriggerLevelAfter
A pointer to RecordedTriggerLevelAfter.

RecordedTriggerLevel

A pointer to RecordedTriggerLevel.

RecordedTimeStampInSeconds
 A pointer to RecordedTimeStamp.time.

RecordedTimeStampInMilliSeconds
 A pointer to RecordedTimeStamp.millitm

dwCallBack

 Refer to Section 2.2.1.

fdwOpen
0: dwCallBack is a window handle, a message will be posted to it whenever

a new frame of data is acquired, together with the Record Buffer No.
indicated by WPARAM.

1: dwCallBack is a thread identifier, a message will be posted to it

whenever a new frame of data is acquired, together with the Record
Buffer No. indicated by WPARAM.

5: dwCallBack is a user event refnum in Labview, a message will be posted

to it whenever a new frame of data is acquired, together with the Record
Buffer No. indicated by DATA.

CalibratedData

It contains the calibrated data converted from the raw data in the latest
record buffer. The size (in Double) of this CalibratedData array must be
equal to [Record Length]  [Sampling Channels].

CalibrationMode
 0: Channel by Channel

1: Interleaved

www.virtins.com 24 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

Return Values
 0: Successful.

2.4.6 DAQLV_Start

Same as Section 2.2.2.

2.4.7 DAQLV_Stop

Same as Section 2.2.3.

2.4.8 DAQLV_Acknowledge

After the calling program processes all the recorded data in the record buffer, it must reset
the number of recorded bytes (referenced by pRecordDataCount and offsetted by the record
buffer no.) to zero to inform the intermediate DLL that this record buffer is ready to accept
new data. DAQLV_Acknowledge can be use for this purpose.

int DAQLV_Acknowledge (int nRecordBufferNum)

Parameters

 nRecordBufferNum: No. of the Record Buffer to be reset.

Return Values

 0: Successful.

2.5 C Wrappers with simple data structures for LabWindows/CVI and

others

Some software development tools supports ANSI C interfaces only, such as
LabWindow/CVI. VtDAQLV.dll provides a set of C interfaces with exactly the same
functions and auguments as those described in Section 2.4. They are:

int DAQCVI_SetDAQType
int DAQCVI_Unlock
int DAQCVI_SetSamplingParameters
int DAQCVI_SetTriggerParameters
int DAQCVI_SetDAQData
int DAQCVI_Start
int DAQCVI_Stop
int DAQCVI_Acknowledge

The corresponding header file is vtDAQc.h and the library file is vtDAQLV.lib.

www.virtins.com 25 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

3. vtDAQ Development Guide
3.1 Flowcharts

DAQ_Unlock()

DAQ_SetParameters()

Set RecordDataCount=0

Process the acquired Data

DAQ_Start()

WM_MYMESSAGE_DAQ_DATA
received (or RecordDataCount>0)?

Set RecordDataCount=0

Y

N

Start

Start DAQ

www.virtins.com 26 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

DAQ_Stop()

WM_MYMESSAGE_DAQ_STOP
received (or the second bit of Status in
DAQDataStruct reset)?

N

Y

It is now fully stopped.

Stop

Stop DAQ

3.2 Basic Files

1. Header file to be included: VirtinsDAQ.h

2. vtDAQ interface DLLs:
(1) SoundCardMMEDAQ.dll for sound card MME driver
(2) SoundCardASIODAQO.dll for sound card ASIO driver.
(3) NIDAQ.dll for NI DAQmx compatible cards.
(4) VTDSOH1.dll and VTDSOH1drv.dll for VT DSO H1 devices.
(5) VTDSOH2.dll and VTDSOH2drv.dll for VT DSO H2 devices.
(6) VTDSOF1.dll and VTDSOF1drv.dll for VT DSO F1 devices.
(7) VTDSOH3.dll and VTDSOH3drv.dll for VT DSO H3 devices.
(8) VTDAQ1.dll
(9) Any other vtDAQ compatible DLLs.

3. vtDAQ interface LIBs:
Every dll comes with its own lib file.

www.virtins.com 27 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

4. Sample Programs

4.1 TestDAQ written in Visual C++ 6.0

TestDAQ is a sample DAQ back-end program. It demonstrates how to use the vtDAQ
interfaces to perform data acquisition. As shown in the above screenshot, there are one
Start/Stop button for starting/stopping DAQ, one combo box for selecting vtDAQ interface
DLLs, and one combo box for selecting the number of sampling channels. Selection of
sampling channels is used to demonstrate how to change a sampling parameter on-the-fly
without manually stopping the DAQ first. All other DAQ parameters are set inside the
software codes for simplicity purpose. The program also demonstrates how easily a back-end
program can interface to a variety of vtDAQ compatible devices, currently including:

 Sound Cards (MME)
 Sound Cards (ASIO)
 NI DAQmx Cards
 VT DSO H1
 VT DSO H2
 VT DSO H3
 VT DSO F1
 VT DAQ 1
 My DAQ Device

To facilitate data processing and analysis after data acquisition, Virtins Technology has also
developed and exposed a suite of Signal Processing and Analysis APIs (vtSPA). These APIs
are also linked inside the TestDAQ program. To demostrate some of the vtSPA features,
TestDAQ calculates the Max, Min, Mean, RMS, frequency count, total count, RPM, duty

www.virtins.com 28 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

cycle, cycle RMS, cycle mean, peak frequency, RMS of peak frequency, and phase of peak
frequency. These values are displayed in the upper par of the oscilloscope graph.
(please refer to: http://www.virtins.com/Signal-Processing-and-Analysis-APIs.pdf for
detailed description of vtSPA).

4.2 MyDAQ.dll written in Visual C++ 6.0

MyDAQ.dll is a sample DAQ intermediate interface DLL. It demonstrates how to program
an intermediate interface DLL that conforms to vtDAQ interface specifications, in order to
allow Multi-Instrument to interface to a proprietary DAQ device. The sample codes define a
virtual DAQ device with the following properties through DAQ_GetDeviceInfo():

 Two Input Channels with selectable bit depth: 8, 16, 24.
 100MHz or 50MHz simultaneous sampling rate per channel.
 Voltage Range: 1V, 2V,
 Coupling Types: AC, DC
 Buffer Size: 20000 bytes per channel
 Hardware trigger supported
 Hardware trigger level adjustable
 Hardware pre-trigger supported

To connect this DLL with Multi-Instrument, you need to put it under the root directory of
Multi-Instrument, launch Multi-Instrument, stop the oscilloscope if it is running, and then go
to [Setting]>[ADC Device Database], select “My DAQ Device” under Device Category. All
the parameters of My DAQ device will be loaded into the ADC database editor. You can
modify these parameters if necessary, and then press “Add”. The device is then added into
Multi-Instrument’s ADC device database. Now, you can use this device by going to
[Setting]>[ADC Device] and select it from the “Device Model” field.

This sample DLL is programmed to support:

 Sampling rates: 100MHz, 50MHz
 Trigger Mode: Auto (Free Run), Normal, Single, or Slow
 Trigger Source: A or B
 Trigger Edge: Up and Down
 Trigger Level: -100%~100%
 Trigger Delay: -100%~100%

The sample DLL does not connected to any physical DAQ device. Instead, it has a built-in
simulation data generator, which generates 1Vpp 100kHz sinewave for Channel A and
0.5Vpp 50kHz sinewave for Channel B. The triggering function is also simulated in the DLL.

4.3 Labview Samples

4.3.1 vtDAQCallBack.vi written in Labview 10.0

www.virtins.com 29 Copyright © 2016 Virtins Technology

http://www.virtins.com/Signal-Processing-and-Analysis-APIs.pdf

vtDAQ and vtDAO APIs 1.5

www.virtins.com 30 Copyright © 2016 Virtins Technology

Virtins Technology

vtDAQCallBack.vi is a sample VI for Labview programming using vtDAQ interfaces.
VtDAQ interface wrapper: vtDAQLV.dll, is called using Labview Call Library function node.
It is basically an oscilloscope VI with adjustable sampling and triggering parameters. To
keep the VI simple, these parameters cannot be changed on-the-fly.

There are two methods to know if a new frame of data has been acquired and is ready for
processing: Callback and Polling. Callback method is faster and more efficient as the
vtDAQLV.dll sends notification (a user event) to the VI once a new frame of data is ready,
while in Polling method, the VI has to check the “Data Ready” flag at regular intervels to see
if the data are ready. This VI uses the callback method. After the data are processed, the VI
calls DAQLV_Acknowledge to release the record buffer for new data acquisition.

4.3.2 vtDAQPolling.vi written in Labview 10.0

This VI is similar to vtDAQCallBack.vi. However, it uses Polling method instead.

vtDAQ and vtDAO APIs 1.5 Virtins Technology

4.3.3 vtDAQCallBackWithAdjustableNumberOfShots written in Labview 10.0

This VI is similar to vtDAQCallBack vi. In addition, it is possible to set number of shots. If
the specified number of shots is reached, the program will stop automatically. If the number
of shots is set to 0, then the program will run forever until the stop button is pressed.

www.virtins.com 31 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

5. vtDAO Interface Specifications

5.1 Structure Definition

5.1.1 OutputSamplingParametersStruct

 struct OutputSamplingParametersStruct
 {
 double SamplingFrequency;
 WORD SamplingChannels;
 WORD SamplingBitResolution;
 DWORD BufferLength;
 WORD DeviceNo;
 WORD ChannelNo[32];
 double HighLimit[32];
 double LowLimit[32];
 int Mode;
 double Duration;
 double ReservedDouble[8];
 DWORD ReservedDWORD[8];
};

 Members

 SamplingFrequency
 Sampling Frequency in Hz.

 SamplingChannels
 Number of Sampling Channels.

 SamplingBitResolution

Bit resolution of the DAO data. It can only be 8, 16, 24, or 32 bits. It
should generally be equal to the bit resolution of the DAC device. However,
if the bit resolution of the DAC device is not an integer multiple of 8, then
an integer multiple of 8 nearest to but greater than the bit resolution of the
DAC device should be used. It is the intermediate DLL’s responsibility to
convert the bit resolution of the DAO data to the bit resolution of the DAC
device. For example, NI USB-6009 has a bit resolution of 12, this
parameter should then be set to 16, and the NIDAO.dll will convert the 16-
bit data to 12-bit data and send them to the DAC device.

 BufferLength
 Buffer Length. It should not exceed the buffer size of the device. For

devices that support continuous data streaming or software timed sampling
clock, the buffer size can be considered as unlimited.

 DeviceNo
 Device No. of the same category of DAC devices present in the system. If

there is only one such device in the system, then its value should be zero. If
there are multiple such devices in the system, then this parameter specifies

www.virtins.com 32 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

which one to use. For example, for SoundCardMMEDAO.dll, it specifies
which sound card to use under Windows OS before Windows Vista; It
specifies which endpoint (i.e. which output destination (e.g. speaker) of
which sound card) to use under Windows Vista.

 ChannelNo[32]

This array assigns each sampling channel with a physical channel No.. The
sampling channel numbers must start from 0 to SamplingChannels-1,
and each sampling channel must be assigned with a physical channel No..
A physical channel is a channel in the DAC device. For example, if the
DAC device supports 16 channels, and you want to sample only Channel 5
and Channel 9 out of the 16 channels, then you should specify:
 ChannelNo[0] = 5
 ChannelNo[1] = 9

 These parameters are not used by SoundCardMMEDAQ.dll.

 For SoundCardASIODAQO.dll, ChannelNo[16] is the physical channel No.

of the DAQ input channel A, and ChannelNo[17] is the physical channel
No. of the DAQ input channel B.

 HighLimit[32]

This array specifies the DAC high limit of each sampling channel.

These parameters are not used by SoundCardMMEDAO.dll and
SoundCardASIODAQO.dll.

LowLimit[32]

This array specifies the DAC low limit of each sampling channel.

These parameters are not used by SoundCardMMEDAO.dll and
SoundCardASIODAQO.dll.

Mode

 For hardware sampling clock:
-1: require new data every second, run for specified seconds and then auto

stop
 0: require new data every second, forever until manual stop
 1: do not require new data, run for specified seconds and then auto stop

(write once)
 2: do not require new data, run forever until manual stop (write once)

 For software timed sampling clock:

 9: require new data every second, run for specified seconds and then auto
stop

 10: require new data every second, forever until manual stop
 11: do not require new data, run for specified seconds and then auto stop

(write once)
 12: do not require new data, run forever until manual stop (write once)

www.virtins.com 33 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

Duration
Signal output duration in second.

ReservedDouble[8]
 Reserved.

ReservedDWORD[8]
 Reserved.

 For VT DSO:
 [0]: DDS Buffer Byte count
 [1]-BIT0: EnableTrigger
 0: no trigger, output immediately
 1: do not output till triggered, trigger conditions set by the
 oscilloscope trigger
 [1]-BIT1: DisableProbeCAL
 0: Enable Probe CAL Output
 1: Disable Probe CAL Output
 [1]-BIT2: EnableDDSInterpolation
 0: No Interpolation
 1: Interpolation
 [1]-BIT3: DDSLoop
 0: No loop
 1: Loop until manual stop
 [1]-BIT4: DDSAmplitudeSweep
 0: No Amplitude Sweep
 1: Amplitude Sweep
 [1]-BIT5: DDSSweepAmplitudeDCSign
 0: Positive
 1: Negative
 [1]-BIT6: ProbeCALWaveform
 0: Square
 1: MLS
 [1]-BIT7: EnableProbeCALFrequencyDivisionRatio
 0: use default 1kHz
 1: use ProbeCALFrequencyDivisionRatio
 [1]-BIT8:

 0:Data Streaming Mode, 1:DDS Mode
 [1]-BIT9:
 0:None, 1:Under DDS Mode, white noise
 [1]-BIT10:
 0:None, 1:Under DDS Mode, MLS

 [2]- DDSPhaseIncremental
 [3]- DDSPhaseSweepIncremental

 [4]- DDSSweepStartAmplitude
 [5]- DDSSweepAmplitudeDC
 [6]- ProbCalFrequencyDivisionRatio

www.virtins.com 34 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

5.1.2 DAODataStruct

 struct DAODataStruct
 {

 char * pData;
 void (* DataNotify)(BOOL PrepareDataFlag, BOOL

NotifyFlag);
 WORD Status;
 double ReservedDouble[8];
 DWORD ReservedDWORD[8];

 };

 Members

 pData
Address of a “char” data array. The “char” data array is called the output
buffer. It contains one second’s output data, i.e. the size of the output
buffer is equal to [Sampling Frequency]  [Sampling Channels] 
[Sampling Bit Resolution] / 8. Note that for 8-bit data, the data are stored
in the output buffer as unsigned values; for 16-bit, 24-bit, and 32-bit data,
the data are stored in the output buffer as signed values. This conforms to
the data format in a wave file.

 DataNotify(BOOL PrepareDataFlag, BOOL NotifyFlag)
 Address of a fixed callback function to be called during the progress of

data output. The DataNotify function is a placeholder for the
application-defined function name. It has two parameters:

PrepareDataFlag

 TRUE: New data to be prepared
 FALSE: No need to prepare new data

 NotifyFlag
 TRUE: One output buffer has just completed data output.
 FALSE: No output buffer has completed data output. This is the

case during output buffer initialization. This callback
function will be called with this flag set to FALSE once
for mode = 1, 2, 11 or 12 and twice (i.e. double buffering)
for mode=-1, 0, 9 or 10.

Status

 DAO status
Bit0: Not used
 Bit1: 0: Stop; 1: Running

ReservedDouble[8]

 Reserved.

ReservedDWORD[8]
 Reserved.

www.virtins.com 35 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

5.1.3 DAODeviceInfoStruct

 struct DAODeviceInfoStruct
 {

 char ProductCategory[255];
 char ProductType[255];
 char ProductNumber[255];
 char DeviceSerialNumber[255];
 char ChassisModuleName[255];
 BOOL AnalogTriggerSupported;
 BOOL DigitalTriggerSupported;
 WORD NumberOfAOs;
 double MaximumRate;
 double MinimumRate;
 BOOL SampleClockSupported;
 double VoltageRange[64];
 double FrequencyRange[64];
 WORD BitRange[32];
 DWORD BufferSize;
 BOOL Validity;
 double ReservedDouble[8];
 DWORD ReservedDWORD[8];

 };

 Members

 ProductCategory[255]
 Product Category name.

 ProductType[255]
 Product Type name.

 ProductNumber[255]
 Product Number.

 DeviceSerialNumber[255]
 Device Serial Number.

 ChassisModuleName[255]
 Chassis Module Name.

 AnalogTriggerSupported

Indicates if the device supports analog trigger.

FALSE: Not supported.
YES: Supported.

 DigitalTriggerSupported

www.virtins.com 36 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

Indicates if the device supports digital trigger.

FALSE: Not supported.
YES: Supported.

 HardwareTriggerLevelAdjustable

Indicates if the hardware trigger level is adjustable.

FALSE: Not supported.
YES: Supported.

 NumberOfAOs

 Indicates the number of AO output channels of the device.

 MaximumRate

Indicates the maximum sampling rate of a channel of the device.

 MinimumRate

Indicates the minimum sampling rate of a channel of the device.

 SampleClockSupported

Indicates if the device supports hardware sampling clock. If hardware sampling
clock is not supported, software timed clock can be used.

 VoltageRange[64]

Indicates the pairs of output voltage ranges supported by the device. Each pair
consists of a low limit, followed by a high limit. The pairs are stored in
ascending order. The not-used elements of this array will be filled with zeros.

 FrequencyRange[64]

Indicates the pairs of output sampling frequency ranges supported by this device.
Each pair consists of a low limit, followed by a high limit. The pairs are stored
in ascending order. The not-used elements of this array will be filled with zeros.

 BitRange[32]

Indicates the pairs of output bit resolutions supported by the device. The values
are stored in ascending order. The not-used elements of this array will be filled
with zeros.

BufferSize

Indicates the buffer size (in samples) per channel. A value of 4294967295
indicates that there is no limit on the buffer size. A value of zero indicates that
the hardware supports software timed sampling clock only.

Validity

 Reserved.

 ReservedDouble[8]
 Reserved.

www.virtins.com 37 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

ReservedDWORD[8]
 Reserved.

5.2 APIs

5.2.1 DAO_SetParameters

The DAO_SetParameters function sets the DAO parameters.

int DAQ_SetParameters(
OutputSamplingParametersStruct& OutputSamplingParameters,
DAODataStruct& DAOData,
DWORD dwCallBack,
DWORD fdwOpen
);

Parameters
OutputSamplingParameters

 Address of an OutputSamplingParametersStruct structure that contains the
specified sampling parameters for DAO. The sampling parameters specified must
not exceed the capability of the DAC device.

DAOData

 Address of a DAODataStruct structure.

dwCallBack

Address of a handle to a window, or the identifier of a thread to be called during
DAO to process messages related to the progress of DAO. If dwCallBack =
NULL, then no message will be posted back, that is, the callback function will not
be called.

fdwOpen
 0: dwCallBack is a window handle.
 1: dwCallBack is a thread identifier.
 2: VT hardware initialization and initialize the DLL with the information stored in

the VT hardware
 3: download ProbCAL setting when signal generator is not running
 4: initialize the DLL with the information stored in the VT hardware, and store

DAOOffset in OutputSamplingParameters.ReservedDouble[0], DAOGain in
OutputSamplingParameters.ReservedDouble[1], so that the calling procedure can
correct the data it outputs.

 5: store DAOOffset in OutputSamplingParameters.ReservedDouble[0], DAOGain in
OutputSamplingParameters.ReservedDouble[1], so that the calling procedure can
correct the data it outputs.

Correction formula(16 bits): NewDAOValue=DAO_DC + (DAOOffset-0x8000) /
0xFFFF + [1 + (DAOGain - 0x8000) / 0xFFFF]  DAO_OSC

Return Values
www.virtins.com 38 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

<0: fail.

5.2.2 DAO_Start

The DAO_Start function starts the DAO process. It should be called after
DAO_SetParameters.

int DAO_Start()

Return Values

0: Successful
-1: Fail to start DAO
-2: Sampling frequency not supported
-3: Buffer size exceeded.
-4: DAO card not found

5.2.3 DAO_Stop

The DAO_Stop function stops the DAO process.

int DAO_Stop()

Return Values

Reserved.

5.2.4 DAO_GetSamplePosition

The DAO_GetSamplePosition function retrieves the current output position.

int DAO_GetSamplePosition()

Return Values

Sample No..

5.2.5 DAO_GetDeviceList

The DAO_GetDeviceList function retrieves a list of the DAC devices of the same category
present in the system. It may also be used to retrieves a list of channels for a specified device.
You may use the retrieved information to determine which device or which channel to use
for DAO.

int DAO_GetDeviceList(
char **ppDevList,
int MaxEntries,
int MaxLength,
int DeviceNo

www.virtins.com 39 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

);

Parameters
ppDevList

Pointer to a string array. Each string will contain a device name. It is NULL
terminated.

MaxEntries
The maximum number of the strings allocated by the calling program.

MaxLength
The maximum length of each string allocated by the calling program.

DeviceNo
-1: to get a list of device names.
>=0: Device No., to get a list of channel names for the specified device. (applicable
for SoundCardASIODAQO.dll)

Return Values
Number of Devices or number of channels.

5.2.6 DAO_GetDeviceInfo

The DAO_GetDeviceInfo function retrieves the information of a specified DAC device
present in the system. You may use the retrieved information to determine the sampling
capacity of the device.

DAO_GetDeviceInfo(
DAODeviceInfoStruct& DAODeviceInfo,
WORD DeviceNo
);

Parameters
DAODeviceInfo
 Address of a DAODeviceInfo structure.

DeviceNo

Device No. of the device whose information to be retrieved.

Return Values

 Reserved.

5.2.7 DAO_Unlock

The DAO_Unlock function unlocks the interface DLL so that it can be used by the calling
program. This function must be called before any interface functions can be used.

int Unlock(

www.virtins.com 40 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

WORD nSerialNumberPart1, //serial number part 1
WORD nSerialNumberPart2, //serial number part 2
WORD nSerialNumberPart3, //serial number part 3
WORD nSerialNumberPart4 //serial number part 4
)

Parameters
nSerialNumberPart1
 Part 1 of the serial number of the interface DLL.

nSerialNumberPart1
 Part 2 of the serial number of the interface DLL.

nSerialNumberPart1
 Part 3 of the serial number of the interface DLL.

nSerialNumberPart1
 Part 4 of the serial number of the interface DLL.

Return Values

 Reserved.

Note that:

1. The serial number has a format of part1-part2-part3-part4, where each part contains four

characters in hex format

2. For copy-protected vtDAO DLLs, such as the trial version, the softkey activated version,

the USB hardkey activated version and the DAO hardware bundled version, a generic
serial number 0000-0000-0000-0000 should be used. Note that for the trial version and
the softkey activated version, a warning message will pop up showing that the DLL is a
trial version. The message will not show up if a USB hardkey or any VT DAO hardware
is connected to your computer.

3. For not-copy-protected vtDAO DLLs, which is usually the case for OEM, a customer

specific serial number will be given when the DLL is purchased from Virtins Technology.

5.2.8 DAO_Load
 Reserved.

5.2.9 DAO_Unload
 Reserved.

5.2.10 DAO_Write
 Reserved.

www.virtins.com 41 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

5.3 Messages and Status Flags

5.3.1 WM_MYMESSAGE_DAO_START

This message is sent when the device is started using DAO_Start. Meanwhile, the
second bit of Status in DAODataStruct is set.

5.3.2 WM_MYMESSAGE_DAO_DATA

This message is sent when the output buffer is being returned to the calling program.
The buffer is returned to the calling program when it has just been output.

5.3.3 WM_MYMESSAGE_DAO_STOP

This message is sent when the device is stopped using DAO_Stop. Meanwhile, the
second bit of Status in DAODataStruct is reset.

5.3.4 WM_MYMESSAGE_DAO_ERROR

 This message is sent when the device has encountered errors.

5.3.5 WM_MYMESSAGE_DAO_STOP_REQUEST

This message is sent when the interface DLL requests the calling program to stop DAO.
Upon receiving this message, the calling program should execute the DAO_Stop
command.

www.virtins.com 42 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

6. vtDAO Development Guide

6.1 Flowcharts

DAO_Unlock()

DAO_SetParameters()

Start

DAO_Start()

Start DAO

Prepare data for the output buffer

Y

End

PrepareDataFlag

Callback

CallBack Function DataNotify

DAO_Stop()

WM_MYMESSAGE_DAQ_STOP
received (or the second bit of Status in
DAQDataStruct reset)?

N

Y

It is now fully stopped.

Stop

Stop DAO

www.virtins.com 43 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5 Virtins Technology

6.2 Basic Files

1. Header file to be included: VirtinsDAO.h

2. vtDAO interface DLLs:
(1) SoundCardMMEDAO.dll for sound card MME driver
(2) SoundCardASIODAQO.dll for sound card ASIO driver.
(3) NIDAO.dll for NI DAQmx compatible cards.
(4) Any other vtDAO compatible DLLs.

6.3 How to Choose Correct Output Mode

6.3.1 Hardware Sampling Clock

If the data to be output repeats every second, then mode 1 or 2 should be used. If the data
output to be stopped automatically by the interface DLL at the end of the specified duration,
then mode 1 should be used. If mode 2 is used, the data output will not stop until the calling
program calls DAO_Stop.

If the data to be output changes every second, then mode -1 or 0 should be used. The calling
program should prepare new data whenever the callback function DataNotify is called
and its PrepareDataFlag is set. If the data output to be stopped automatically by the
interface DLL at the end of the specified duration, then mode -1 should be used. If mode 0 is
used, the data output will not stop until the calling program calls DAO_Stop.

6.3.2 Software Timed Sampling Clock

If the data to be output repeats every second, then mode 11 or 12 should be used. If the data
output to be stopped automatically by the interface DLL at the end of the specified duration,
then mode 11 should be used. If mode 12 is used, the data output will not stop until the
calling program calls DAO_Stop.

If the data to be output changes every second, then mode 9 or 10 should be used. The calling
program should prepare new data whenever the callback function DataNotify is called
and its PrepareDataFlag is set. If the data output to be stopped automatically by the
interface DLL at the end of the specified duration, then mode 9 should be used. If mode 10 is
used, the data output will not stop until the calling program calls DAO_Stop.

Generally, software timed sampling clock is not so accurate as hardware sampling clock. The
timing task is performed by the interface DLL and its accuracy depends on the current
workload of the computer system.

www.virtins.com 44 Copyright © 2016 Virtins Technology

vtDAQ and vtDAO APIs 1.5

www.virtins.com 45 Copyright © 2016 Virtins Technology

Virtins Technology

7. Sample Programs

7.1 TestDAO written in Visual C++ 6.0

TestDAO is a sample DAO back-end program. It demonstrates how to use the vtDAO
interfaces to perform data output. There are one Start/Stop button for starting/stopping DAO
and one combo box for selecting vtDAO interface DLLs. All the DAO parameters are set
inside the software codes. No GUIs are provided for changing these parameters for simplicity
purpose.

	vtDAQ and vtDAO APIs
	1. Introduction
	2. vtDAQ Interface Specifications
	2.1 Structure Definition
	2.1.1 SamplingParametersStruct
	TerminalConfiguration[32]
	CouplingType[32]
	ReservedDouble[8]
	ReservedDWORD[8]

	2.1.2 TriggerParametersStruct
	HardwareTriggeres
	ReservedDouble[8]
	ReservedDWORD[8]

	2.1.3 DAQDataStruct
	ReservedDouble[8]
	ReservedDWORD[8]

	2.1.4 DAQDAOSyncParametersStruct
	2.1.5 DAQDeviceInfoStruct
	Parameters
	ProductCategory[255]
	ProductType[255]
	ProductNumber[255]
	DeviceSerialNumber[255]
	ChassisModuleName[255]
	SoftwareTriggerSupported
	HardwareTriggerSupported
	HardwareTriggerLevelAdjustable
	HardwarePreTriggerSupported
	HardwareALTTriggerSupported
	ExternalTriggerSupported
	ExternalTriggerLevelAdjustable
	BasicUnit
	NumberOfAIs
	SingleChannelRate
	MultiChannelRate
	MinimumRate
	SimultaneousSamplingSupported
	VoltageRange[64]
	FrequencyRange[64]
	BitRange[32]
	CouplingType[3]
	CouplingTypePerChannel
	TerminalType[5]
	BufferSize
	Validity
	ReservedDouble[8]
	ReservedDWORD[8]

	2.2 APIs
	2.2.1 DAQ_SetParameters
	Parameters

	2.2.2 DAQ_Start
	2.2.3 DAQ_Stop
	2.2.4 DAQ_GetSamplePosition
	2.2.5 DAQ_GetDeviceList
	Parameters
	MaxEntries
	MaxLength
	DeviceNo

	2.2.6 DAQ_GetDeviceInfo
	Parameters
	DAQDeviceInfo
	DeviceNo

	2.2.7 DAQ_Unlock
	2.2.8 DAQ_Load
	2.2.9 DAQ_Unload

	2.3 Messages and Status Flags
	2.3.1 WM_MYMESSAGE_DAQ_START
	2.3.2 WM_MYMESSAGE_DAQ_DATA
	2.3.3 WM_MYMESSAGE_DAQ_STOP
	2.3.4 WM_MYMESSAGE_DAQ_ERROR

	2.4 C++ Wrappers with simple data structures for Labview and others
	2.4.1 DAQLV_SetDAQType
	2.4.2 DAQLV_Unlock
	2.4.3 DAQLV_SetSamplingParameters
	2.4.4 DAQLV_SetTriggerParameters
	2.4.5 DAQLV_SetDAQData
	2.4.6 DAQLV_Start
	2.4.7 DAQLV_Stop
	2.4.8 DAQLV_Acknowledge

	2.5 C Wrappers with simple data structures for LabWindows/CVI and others

	3. vtDAQ Development Guide
	3.1 Flowcharts
	3.2 Basic Files

	4. Sample Programs
	4.1 TestDAQ written in Visual C++ 6.0
	4.2 MyDAQ.dll written in Visual C++ 6.0
	4.3 Labview Samples
	4.3.1 vtDAQCallBack.vi written in Labview 10.0
	4.3.2 vtDAQPolling.vi written in Labview 10.0
	4.3.3 vtDAQCallBackWithAdjustableNumberOfShots written in Labview 10.0

	5. vtDAO Interface Specifications
	5.1 Structure Definition
	5.1.1 OutputSamplingParametersStruct
	Mode
	Duration
	ReservedDouble[8]
	ReservedDWORD[8]

	5.1.2 DAODataStruct
	ReservedDouble[8]
	ReservedDWORD[8]

	5.1.3 DAODeviceInfoStruct
	 Members
	 ProductNumber[255]
	 NumberOfAOs
	 MaximumRate
	 MinimumRate

	5.2 APIs
	5.2.1 DAO_SetParameters
	Parameters

	5.2.2 DAO_Start
	5.2.3 DAO_Stop
	5.2.4 DAO_GetSamplePosition
	5.2.5 DAO_GetDeviceList
	Parameters
	MaxEntries
	MaxLength
	DeviceNo

	5.2.6 DAO_GetDeviceInfo
	Parameters
	DAODeviceInfo
	DeviceNo

	5.2.7 DAO_Unlock
	5.2.8 DAO_Load
	5.2.9 DAO_Unload
	5.2.10 DAO_Write

	5.3 Messages and Status Flags
	5.3.1 WM_MYMESSAGE_DAO_START
	5.3.2 WM_MYMESSAGE_DAO_DATA
	5.3.3 WM_MYMESSAGE_DAO_STOP
	5.3.4 WM_MYMESSAGE_DAO_ERROR
	5.3.5 WM_MYMESSAGE_DAO_STOP_REQUEST

	6. vtDAO Development Guide
	6.1 Flowcharts
	6.2 Basic Files
	6.3 How to Choose Correct Output Mode
	6.3.1 Hardware Sampling Clock
	6.3.2 Software Timed Sampling Clock

	7. Sample Programs
	7.1 TestDAO written in Visual C++ 6.0

